هرزنامه و کارهای انجام شده برای شناسایی هرزنامه 6

هرزنامه و کارهای انجام شده برای شناسایی هرزنامه 6


  • 302 بازدید

تاریخچه هرزنامه با تاریخچه اینترنت و وب مشابه است، از زمانی که وب وارد دنیای مجازی شد از همان زمان هرزنامه‌ها نیز وارد دنیای وب شدند. در سال های اولیه شروع وب و استفاده کاربران از ایمیل‌ها، کسانی که به دنبال تبلیغات محصول خود بودند این موضوع را فرصتی برای تبلیغ کالاهای خود دیدند، به همین دلیل در ابتدا و در دهه 90 میلادی هرزنامه‌ها بیشتر به صورت ایمیل ظاهر شدند. در این زمان کسانی که به دنبال تبلیغات محصولات خود بودند به‌راحتی ایمیل‌های تبلیغات خود را به هزاران نفر ارسال می کردند، بدین ترتیب به هدف خود که تبلیغ کالایشان بود می رسیدند. با پیشرفت وب انواع هرزنامه‌ها وارد دنیای مجازی شدند و شکل استفاده از آنها پیچیده تر شد. در ابتدا هرزنامه‌ها صرفا هدف تبلیغاتی داشتند ولی اکنون برای انتشار لینک های مخرب، تکثیر محتوای مستهجن و یا انتشار اخبار دروغ نیز استفاده می‌شود. گستردگی هرزنامه باعث شده است همچنان تحقیقات بسیاری برای متوقف کردن آن‌ها در جریان باشد. بنابر آمارهای مربوط در سال 2002 بیش از 36% از ایمیل ها را هرزنامه ها تشکیل می دادند، ولی در سال 2013 این رقم به 70% درصد افزایش پیدا کرده است.
در این قسمت مقالات مرتبط با شناسایی هرزنامه مورد اشاره قرار خواهد گرفت. شناسایی هرزنامه‌ها از زیر مجموعه های متن کاوی و کشف دانش از متن است و دارای سابقه بسیاری در بین محققین است. از زمانی که ارسال هرزنامه توسط تولید کنندگان هرزنامه شروع شد، محققین به دنبال ارائه راه‌حل‌هایی برای فیلتر کردن این هرزنامه‌ها بودند. روش ها و الگوریتم های متن کاوی در شناسایی هرزنامه ها کاربرد گسترده ای دارند و این فیلد مطالعاتی یکی از کاربردهای متن کاوی است. 
در پژوهشی سینگ و همکاران برای بهبود طبقه بندی هرزنامه ایمیل در زبان انگلیسی از یک الگوریتم ترکیبی استفاده کردند. آنها به آموزش یک شبکه عصبی مصنوعی با استفاده از الگوریتم ممتیک پرداختند و عملکرد آن را روی مجموعه داده هرزنامه ایمیل ارزیابی کردند. الگوریتم ممتیک، ظرفیت جستجوی محلی شبیه سازی شده و قابلیت جستجوی جهانی الگوریتم ژنتیک را برای بهینه سازی پارامترهای شبکه عصبی مصنوعی ادغام می کند. عملکرد الگوریتم ممتیک با الگوریتم ژنتیک در آموزش شبکه عصبی مصنوعی مقایسه شده است. بیشتر به بررسی پارامترهای مختلف، مکانیسم ها و معماری های استفاده شده برای بهینه کردن عملکرد شبکه و رسیدن به تعادل عملی بین الگوریتم ژنتیک سراسری و تکنیک جستجوی محلی پرداختند. آنها در این آزمایش از 4661 نمونه ایمیل استفاده کردند. برای انجام این آزمایش مجموعه نمونه ایمیل به دو مجموعه تست و مجموعه یادگیری به نسبت 26:16  بصورت تصادفی انتخاب و تقسیم شده است. کارایی فیلتر هرزنامه شبکه عصبی مصنوعی، در آزمایش برای پارامتر دقت مورد بررسی قرار گرفت و دارای بهبود این پارامتر در تشخیص هرزنامه می باشد. علاوه بر این، این تکنیک ترکیبی، جستجو را به سمت بهینه شدن سراسری پیش میبرد و همگرایی بهتر و عملکرد بهتر را با تعداد کمتری از مراحل آموزشی تضمین می کند.

کپی برداری بدون ذکر منبع، براساس قانون جرایم اینترتی و مادۀ 12 فصل سوم قانون جرایم رایانه ای غیر قانونی بوده و مجازات جزای نقدی و حبس دارد و شرعا نیز حرام است! 

اگر در زمینه متن کاوی و شناسایی هرزنامه ها در حال تحقیق یا پیاده سازی پروژه تجاری یا پایان نامه هستید برای گرفتن مشاوره یا دادن سفارش انجام با ما تماس بگیرید.  آکادمی داده در تلگرام، واتزآپ و تمامی پیام رسان های ایرانی(سروش، آی گپ، بله، گپ و ویسپی) با شماره 09120637751 حضور دارد برای ارتباط از طریق ایمیل آدرس جیمیل: dataacademyir@gmail.com می باشد. 

افتخار آکادمی داده، همسفر بودن با شما در راه یادگیری علم داده است.